1 - 12 GHz Packaged Low-Noise MMIC Amplifier **Satellite and Telemetry Communications** **Wide-band Communication Systems** **Commercial Wireless Systems** **Microwave Point-to-Point Radios** **APPLICATIONS** **Test Instrumentation** **EW Receiver Systems** #### **FEATURES** Wideband: 1.0 to 12 GHz NF: 1.3 dB @ 2.0 GHz 1.4 dB @ 6.0 GHz 1.9 dB @ 12.0 GHz 16 dBm @ 6.0 GHz P-1dB: 16 dBm @ 6.0 GHz OIP3: 27 dBm @ 6.0 GHz Gain: 17 dB @ 6.0 GHz • Bias Condition: VDD = 5 V IDD = 55 mA - 50-Ohm On-chip Matching - Unconditionally Stable: 50 MHz to 20 GHz - Gain Control Option Available with 2nd Gate Control Voltage - 4x4 mm, 24 Lead Ceramic SMT Package ### DESCRIPTION The MLA-01122B-C4 is a packaged fully-matched broadband Low-Noise MMIC amplifier utilizing high-reliability low-noise GaAs PHEMT technology. This MMIC is suited for Satellite Communications, Microwave radios, Instrumentation, Wideband Systems and also many commercial wireless applications where low-noise figure with high-gain is desirable. It has excellent gain (17 dB) and Noise Figure (1.4 dB, mid-band) over a broad frequency range. Typical P-1dB is 16 dBm and OIP3 is +27dBm @ 6 GHz. It has on-chip bias circuit, choke and DC blocking to provide bias stability and ease of use. The 2nd Gate voltage input can be used for gain control if necessary. Available in 4x4mm, 24 Lead Ceramic SMT Package. # ELECTRICAL SPECIFICATIONS: VDD=+5.0V, VG1=+0.13V, VG2=+2V, IDD=55 mA, Ta=25 C, ZO=50 ohm (1) | PARAMETER | TEST CONDITIONS | TYPICAL DATA | UNITS | |--|------------------------------------|------------------------------|----------| | Frequency Range | | 1-12 | GHz | | Gain | 1 - 8 GHz
10 - 12 GHz | 17
19 | dB | | Gain Flatness | 1 - 8 GHz
1 - 12 GHz | 0.7
1.5 | +/-dB | | Input Return Loss | 2 GHz
5 GHz
10 GHz | 15
9.5
13 | dB | | Output Return Loss | | 11 | dB | | Output P1dB | 2 GHz
6 GHz
10 GHz
12 GHz | 17.5
16.0
15.0
13.0 | dBm | | Output IP3
@ 0 dBm/tone, 1 MHz separation | 2 GHz
6 GHz
12 GHz | 30
27
25 | dBm | | Noise Figure | 2 GHz
6 GHz
12 GHz | 1.3
1.4
1.9 | dB | | Operating Bias Conditions: VDD IDD | VG1=+0.13V, VG2=+2V | +5
55 | V
m A | | Stability Factor K | 0.05 to 20 GHz | > 1 | | (1) All data is measured on Evaluation Board, with VG2 bias derived from VDD bias using resistive voltage divider as shown in Evaluation Board Schematic & Layout. (2) Vg1 can be slightly positive or negative depending on the lot and operation current. # 1 - 12 GHz Packaged Low-Noise MMIC Amplifier ### TYPICAL RF PERFORMANCE: VDD=+5.0V, VG1=+0.13V, VG2=+2V, IDD=55 mA, Ta=25 C, ZO=50 ohm (1) ## 1 - 12 GHz Packaged Low-Noise MMIC Amplifier ### **EVALUATION BOARD LAYOUT:** #### Parts List: C1,C2,C3: 04025C102KAT2A 1000pF AVX C4,C5,C6: 0402ZD104KAT2A 0.1uF AVX R1: RK73B1ETTP562J(0402)5.6k AVX R2: RK73B1ETTP392J(0402)3.9k AVX R3: RK73Z1ETTP (0402)0 Ohms AVX P2: TSM-105-01-S-SV SAMTEC J1,J2:142-0701-841 JOHNSON PCB: 20 mill thick 2-Layer R04003 Vias are plated & filled with Cupaste & planarized #### NOTES: BACKSIDE OF PACKAGE IS RF/DC GND AND MUST BE GROUNDED WITH ENOUGH VIAS AS SHOWN TO PCB RF/DC GND FOR BEST ELECTRICAL AND THERMAL PERFORMANCE ## **APPLICATION CIRCUIT SCHEMATIC:** ### Notes: - Package Backside is RF/DC GND and must be well grounded through PCB vias. - External DC bypass capacitors must be placed as close to package as possible. ## **MECHANICAL INFORMATION** ## Notes: - 1) 4X4 mm, 24 Lead Ceramic Package Outline Drawing. - 2) Dimensions are in millimeters. - 3) Lead and Ground Paddle Plating: Gold - 4) Package Material: Black Alumina - 5) All GND Leads and Backside Paddle must be grounded to PCB RF/DC ground. ## **ABSOLUTE MAXIMUM RATINGS** | SYMBOL | PARAMETERS | UNITS | MAX | |---------|--------------------------------|-------|------------| | VDD | Drain Voltage | V | 7 | | IDD | Drain Current | mA | 100 | | Pdiss | DC Pow er Dissipation | W | 0.4 | | Pin max | RF Input Pow er | dBm | 13 | | Toper | Operating Case/Lead Temp Range | ٥C | -40 to +85 | | Tch | Channel Temperature | ٥C | 150 | | Tstg | Storage Temperature | ٥C | -60 to 150 | Exceeding any on of these limits may cause permanent damage. # **Functional Diagram**