

V02.1112

HMC995LP5GE

GaAs pHEMT MMIC 3 WATT POWER AMPLIFIER SMT WITH POWER DETECTOR, 12 - 16 GHz

Typical Applications

The HMC995LP5GE is ideal for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios
- VSAT & SATCOM
- Military & Space

Functional Diagram

Features

Intergrated Power Detector Saturated Output Power: 35.5 dBm @ 24% PAE High Output IP3: 41 dBm High Gain: 27 dB DC Supply: +5V to +7V @ 1200 mA No External Matching Required

General Description

The HMC995LP5GE is a 4 stage GaAs pHEMT MMIC 2 Watt Power Amplifier with an integrated temperature compensated on-chip power detector which operates between 12 and 16 GHz. The HMC995LP5GE provides 27 dB of gain, 35.5 dBm of saturated output power, and 24% PAE from a +7V supply. The HMC995LP5GE exhibits excellent linearity and is optimized for high capacity digital microwave radio. It is also ideal for 13.75 to 14.5 GHz Ku Band VSAT transmitters as well as SATCOM applications. The HMC995LP5GE amplifier I/Os are internally matched to 50 Ohms and is packaged in a leadless QFN 5x5 mm surface mount package and requires no external matching components.

Electrical Specifications $T_{A} = +25^{\circ}$ C, Vdd = Vdd1 = Vdd2 = Vdd3 = Vdd4 = Vdd5 = +7V, Idd = 1200 mA^[1]

A				
Parameter	Min.	Тур.	Max.	Units
Frequency Range	requency Range 12 - 16			GHz
Gain ^[3]	24	27		dB
Gain Variation Over Temperature		0.03		dB/ °C
Input Return Loss		9		dB
Output Return Loss		15		dB
Output Power for 1 dB Compression (P1dB)	32	34.5		dBm
Saturated Output Power (Psat)		35.5		dBm
Output Third Order Intercept (IP3) ^[2]		41		dBm
Total Supply Current (Idd)		1200		mA

[1] Adjust (Vgg1=Vgg2=Vgg3) between -2 to 0V to achieve Idd = 1200mA typical.

[2] Measurement taken at +7V @ 1200mA, Pout / Tone = +22 dBm

[3] Board loss subtracted out

Broadband Gain & Return Loss vs. Frequency

V02.1112

Input Return Loss vs. Temperature

P1dB vs. Temperature

Gain vs. Temperature [1]

Output Return Loss vs. Temperature

P1dB vs. Supply Voltage

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Psat vs. Temperature

V02.1112

P1dB vs. Supply Current (Idd)

Output IP3 vs. Temperature, Pout/Tone = +22 dBm

Psat vs. Supply Voltage

Psat vs. Supply Current (Idd)

Output IP3 vs. Supply Current, Pout/Tone = +22 dBm

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Output IP3 vs. Supply Voltage, Pout/Tone = +22 dBm

V02.1112

Output IM3 @ Vdd = +6V

Power Compression @ 13 GHz

Output IM3 @ Vdd = +5V

Output IM3 @ Vdd = +7V

Power Compression @ 15 GHz

AMPLIFIERS - LINEAR & POWER - SMT

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Detector Voltage vs. Frequency & Temperature

V02.1112

Gain & Power vs. Supply Current @ 14 GHz

Reverse isolation vs. Temperature

Gain & Power vs. Supply Voltage @ 14 GHz

Power Dissipation

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Absolute Maximum Ratings

+8V
+24 dBm
150 °C
8.9 W
7.3 °C/W
-65 to +150 °C
-40 to +85 °C
Class 1A

V02.1112

Typical Supply Current vs. Vdd

Vdd (V)	ldd (mA)
5	1200
6	1200
7	1200

Note: Amplifier will operate over full voltage ranges shown above Vgg adjusted to achieve Idd = 1200 mA

Outline Drawing

V02.1112

Package Information

Part Number		Package Body Material	Lead Finish	MSL Rating	Package Marking ^[1]
HMC995LP5GE	LP5GE RoHS-compliant Low Stress Injection Molded Plastic		100% matte Sn	MSL3 ^[2]	<u>H995</u> XXXX

[1] 4-Digit lot number XXXX

[2] Max peak reflow temperature of 260 °C

V02.1112

HMC995LP5GE

GaAs pHEMT MMIC 3 WATT POWER AMPLIFIER SMT WITH POWER DETECTOR, 12 - 16 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1-3, 9, 14 17-19, 23, 24	N/C	These pins are not connected internally, however all data shown herein was measured with these pins connected to RF/DC ground externally.	
4	RFIN	This pad is DC coupled and matched to 50 Ohms.	RFIN O
5, 15	GND	These pins and package bottom must be connected to RF/DC ground.	
6-8	Vgg1, Vgg2 Vgg3	Gate control for amplifier. External bypass capacitors of 100pF, 10nF and 4.7uF are required. Please follow "MMIC Amplifier Biasing Proceedure" App Note.	Vgg1-3
10, 11 20-22	Vdd1, Vdd2, Vdd3, Vdd4, Vdd5	Drain bias voltage for the amplifier. External bypass capacitors of 100pF, 10nF and 4.7µF capacitors are required.	OVdd1−5
12	Vref	DC voltage of diode biased through external resistor, used for temperature compensation of Vdet. See Application Circuit.	OVref
13	Vdet	DC voltage representing RF output power rectified by diode which is biased through an external resistor. See Appilation Circuit.	OVdet
16	RFOUT	This pin is DC coupled and matched to 50 Ohms.	−−−⊂ RFOUT

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

V02.1112

GaAs pHEMT MMIC 3 WATT POWER AMPLIFIER SMT WITH POWER DETECTOR, 12 - 16 GHz

Application Circuit

HMC995LP5GE

GaAs pHEMT MMIC 3 WATT POWER AMPLIFIER SMT WITH POWER DETECTOR, 12 - 16 GHz

Evaluation PCB

List of Materials for Evaluation PCB EVAL01-HMC995LP5GE [1]

V02.1112

Item	Description	
J1, J2, J5, J6	K Connector SRI	
J3, J4	DC Pin	
C2, C3, C9, C12, C14, C16, C17, C19	100 pF Capacitor, 0402 Pkg.	
C1, C4, C10, C11, C13, C15, C18, C20	10 nF Capacitor, 0402 Pkg.	
C21, C22, C25 - C30	4.7uF Capacitor, Case A.	
U1	HMC995LP5GE Power Amplifier	
РСВ	600-00163-00 Evaluation PCB	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350 or Arlon FR4

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.