

LX8941

ADJUSTABLE LOW DROPOUT REGULATOR

PRELIMINARY DATA SHEET

THE INFINITE POWER OF INNOVATION

DESCRIPTION

The LX8941 is an adjustable, low dropout regulator rated for more than 1A of output current. It can regulate with as low as 0.8V headroom between the input and output voltages, at 1A output current, thus minimizing power dissipation. In addition, it can be used in applications where worst case supplies require a low input output differential to maintain regulation. This feature makes it ideal for some processor applications that require 4V operation from a 5V supply. In addition, the LX8941 provides an on/off switch that reduces the IC quiescent current when activated, making it ideal for battery operated applications.

KEY FEATURES

- 2% Internally Trimmed Output
- Output Current In Excess of 1A
- Input-Output Differential Less Than 0.8V @ 1A
- Reverse Battery Protection
- Short Circuit Protection
- Internal Thermal Overload Protection
- Available in 5-Lead Plastic TO-220 & Surface-Mount TO-263

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com

PACKAGE ORDER INFO					
T _A (°C)	Plastic TO-220 5-Pin	DD Plastic TO-263 5-Pin			
0 to 70	LX8941CP	LX8941CDD			

Note: Available in Tape & Reel. Append the letter "T" to the part number. (i.e. LX8941CDDT)

LX8941

Adjustable Low Dropout Regulator

PRELIMINARY DATA **S** н е е т

ABSOLUTE MAXIMUM RATINGS (Note 1)

Input Voltage (V_{in})	
Operating Junction Temperature	
Plastic (P, DD Package)	
Storage Temperature Range	
Lead Temperature (Soldering, 10 seconds)	

Note 1. Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of the specified terminal

ostive into, negative out of the sp	P PACKAGE (Top View)	
HERMAL DATA		
TO TAB, $θ_{,r}$ TO AMBIENT, $θ_{,A}$	4.5°C/W 60°C/W	TAB IS GND
ΤΟ ΤΑΒ , θ _π	4.5°C/W	3 GND 2 V ₀ 1 V _N
TO AMBIENT, θ_{JA}	60°C/W	DD PACKAGE

(Top View)

PACKAGE PIN OUTS

ON/OFF

- ADJ GND

- V_o

V_{IN}

TAB IS GND

(

5

•

P PACKAGE: THERMAL RESISTANCE-JUNCTION THERMAL RESISTANCE-JUNCTION DD PACKAGE: THERMAL RESISTANCE-JUNCTION THERMAL RESISTANCE-JUNCTION

Junction Temperature Calculation: $T_{I} = T_{A} + (P_{D} \ge \theta_{IA}).$

П

The θ_{IA} numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

Adjustable Low Dropout Regulator

PRELIMINARY DATA SHEET

RECOMMENDED OPERATING CONDITIONS

Parameter		Recommen	Units		
		Min.	Тур.	Max.	Units
Input Voltage (Note 2)	V _{IN}	3.8		26	V
Load Current (with adequate heatsinking)		5		1000	mA
Input Capacitor (V_{N} to GND)		0.1			μF
Output Capacitor with ESR of 10Ω max., (V _{out} to GND)		10			μF

Note 2. $V_{IN (MIN)} = V_{OUT} + 1.2\Delta V_{(MAX)}$. See Dropout Voltage maximum limit.

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, these specifications apply over the operating ambient temperature of 0°C to +125°C for LX8941CP; V_{IN} = 10V, I_{O} = 1A, C_{OUT} = 22µF, and are for DC characteristics only. (Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.) Note 3: The output voltage range is 4 to 25V and is determined by the two external resistors, R1 and R2. See Poduct Highlight.

Parameter	Symbol	Test Conditions		LX8941		
Falanietei	Syllool		Min.	Тур.	Max.	- Units
ADJ Pin Voltage (Note 3)	V _{ADJ}	$I_{0} = 0A, T_{A} = 25^{\circ}C$	1.225	1.25	1.275	V
Line Regulation	ΔΫοι	$V_{o} + 2V \le V_{N} \le 26V, I_{o} = 5mA$		1	50	mV
Load Regulation	ΔV_{OL}	$50\text{mA} \le I_{O} \le 1\text{A}, V_{O} = V_{ADJ}$		10	50	mV
Dropout Voltage	ΔV	$I_o = 100 \text{mA}$		150	300	mV
		$I_o = 500 \text{mA}$		275	500	mV
		$I_0 = 1A$		400	800	mV
QuiescentCurrent	I _Q	$I_{o} \leq 5 \text{mA}, 7 \leq V_{N} \leq 26 \text{V}$		3	15	mA
		$I_{o} = 500 \text{mA}$		30	50	mA
		I _o = 1000mA		115	180	mA
Adjust Pin Current	I _{ADJ}	V _{IN} = 10V, I _O = 1A		2	20	μA
Current Limit	I _{cL}	V _{IN} = 26V	1	1.2		A
Output Noise Voltage (Note 4)	V _{O RMS}	10Hz - 100kHz, I _o = 5mA		150		μV _{RMS}
Long Term Stability (Note 4)				20		mV/1000h
Ripple Rejection (Note 4)	R _R	$f_{o} = 120Hz, 1V_{RMS}, I_{o} = 100mA$		66		dB
Enable Logic Section	1	-	•			•
On Threshold Voltage			2			V
On Threshold Current				0.1	50	μA
Off Threshold Voltage					0.8	V
Off Threshold Current			-10	-0.3		μA

Note 4: These parameters although guaranteed, are not tested in production.

PRELIMINARY DATA - Information contained in this document is pre-production data, and is proprietary to LinFinity. It may not modified in any way without the express written consent of LinFinity. Product referred to heren is offered in sample form only, and Linfinity reserves the right to change or discontinue this proposed product at any time.

