

Silicon Carbide (SiC) **Schottky Diode** - EliteSiC, 4 A, 650 V, D1, DPAK

FFSD0465A

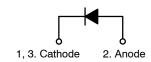
Description

Silicon Carbide (SiC) Schottky Diodes use a completely new technology that provides superior switching performance and higher reliability compared to Silicon. No reverse recovery current, temperature independent switching characteristics, and excellent thermal performance sets Silicon Carbide as the next generation of power semiconductor. System benefits include highest efficiency, faster operating frequency, increased power density, reduced EMI, and reduced system size and cost.

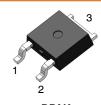
Features

- Max Junction Temperature 175°C
- Avalanche Rated 25 mJ
- High Surge Current Capacity
- Positive Temperature Coefficient
- Ease of Paralleling
- No Reverse Recovery/No Forward Recovery
- This Device is Pb-Free, Halogen Free/BFR Free and RoHS Compliant

Applications


- General Purpose
- SMPS, Solar Inverter, UPS
- Power Switching Circuits

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)


Symbol	Paramete	Value	Unit	
V_{RRM}	Peak Repetitive Reverse Voltage		650	٧
E _{AS}	Single Pulse Avalanche Energy (Note 1)		25	mJ
I _F	Continuous Rectified Forward Current @ $T_C < 160^{\circ}C$ Continuous Rectified Forward Current @ $T_C < 135^{\circ}C$		4	Α
			7.6	
I _{F, Max}	Surge Current	T _C = 25°C, 10 μs	360	Α
		T _C = 150°C, 10 μs	330	Α
I _{F, SM}	Non-Repetitive Forward Surge Current Half-Sine Pulse, $t_P = 8.3 \text{ ms}$		38	Α
I _{F, RM}	Repetitive Forward Surge $t_P = 8.3 \text{ ms}$		18	Α
Ptot	Power Dissipation	T _C = 25°C	61	W
		T _C = 150°C	10	W
T _J ,T _{STG}	Operating and Storage Temperature Range		–55 to +175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. E_{AS} of 25 mJ is based on starting $T_J = 25$ °C, L = 0.5 mH, $I_{AS} = 10$ A, V = 50 V

Schottky Diode

CASE 369AS

MARKING DIAGRAM

FFSD0465A

Α

YWW ZZ

= Specific Device Code

= Assembly Site

= Date Code (Year & Week)

= Lot Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

FFSD0465A

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case, Max.	2.46	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
V _F Forward Voltage		I _F = 4 A, T _C = 25°C	-	1.50	1.75	V
		I _F = 4 A, T _C = 125°C	-	1.6	2.0	
		I _F = 4 A, T _C = 175°C	_	1.72	2.4	
I _R	Reverse Current	V _R = 650 V, T _C = 25°C	_	-	200	μΑ
		V _R = 650 V, T _C = 125°C	-	-	400	
		V _R = 650 V, T _C = 175°C	-	-	600	
Q _C	Total Capacitive Charge	V = 400 V	-	16	-	nC
С	Total Capacitance	V _R = 1 V, f = 100 kHz	-	258	-	pF
		V _R = 200 V, f = 100 kHz	-	29	-	
		V _R = 400 V, f = 100 kHz	_	21	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Part Number	Top Marking	Package	Shipping*
FFSD0465A	FFSD0465A	DPAK	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D

TYPICAL CHARACTERISTICS

(T_J = 25°C UNLESS OTHERWISE NOTED)

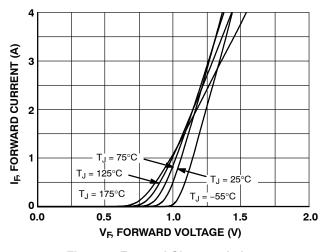
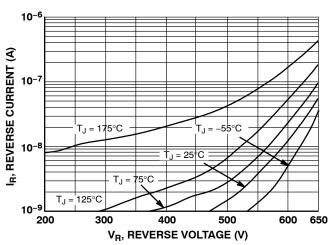
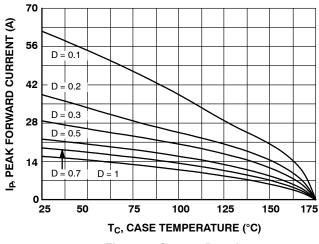


Figure 1. Forward Characteristics

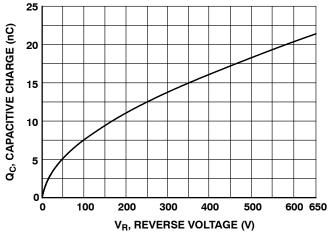



Figure 2. Reverse Characteristics

FFSD0465A

TYPICAL CHARACTERISTICS (CONTINUED)

(T_J = 25°C UNLESS OTHERWISE NOTED)


70

NOLLY 42 28 28 28 25 50 75 100 125 150 175 T_C, CASE TEMPERATURE (°C)

Figure 3. Current Derating

Figure 4. Power Derating

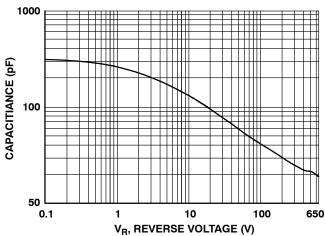


Figure 5. Capacitive Charge vs. Reverse Voltage

Figure 6. Capacitance vs. Reverse Voltage

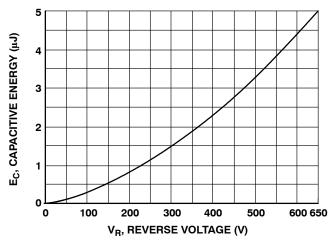


Figure 7. Capacitance Stored Energy

FFSD0465A

TYPICAL CHARACTERISTICS (CONTINUED)

(T_J = 25°C UNLESS OTHERWISE NOTED)

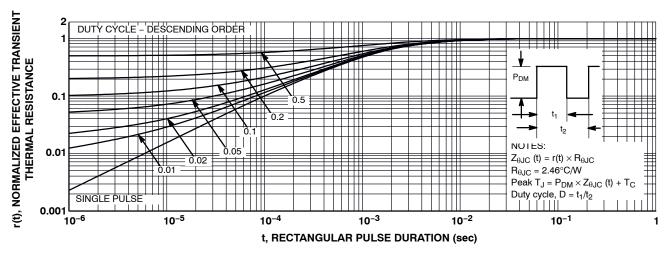


Figure 8. Junction-to-Case Transient Thermal Response Curve

TEST CIRCUIT AND WAVEFORMS

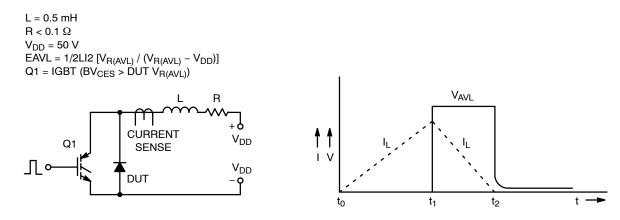


Figure 9. Unclamped Inductive Switching Test Circuit & Waveform

h3

3

-A

L3

Æ

L4

C

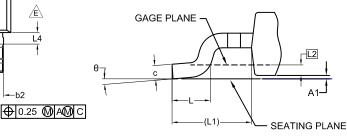
(z)

DPAK3 (TO-252 3 LD)CASE 369AS **ISSUE A**

DATE 28 SEP 2022

MILLIMETERS

NOM. MAX.

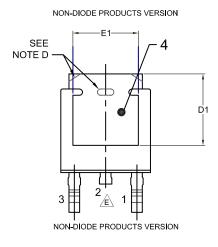

NOTES: UNLESS OTHERWISE SPECIFIED

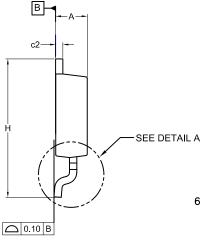
- A) THIS PACKAGE CONFORMS TO JEDEC, TO-252,
- ISSUE C, VARIATION AA.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-2009.
- D) SUPPLIER DEPENDENT MOLD LOCKING HOLES OR CHAMFERED CORNERS OR EDGE PROTRUSION.

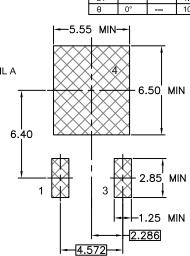
 FOR DIODE PRODUCTS, L4 IS 0.25 MM MAX.

 F) DIMENSIONS ARE EXCLUSIVE OF BURRS,
- MOLD FLASH AND TIE BAR EXTRUSIONS.
- G) LAND PATTERN RECOMMENDATION IS BASED ON IPC7351A STD TO228P991X239-3N.

DIM




DETAIL A (ROTATED -90°) SCALE: 12X


A1	0.00	0.127		
b	0.64	0.77	0.89	
b2	0.76	0.95	1.14	
b3	5.21	5.34	5.46	
С	0.45	0.53	0.61	
c2	0.45	0.52	0.58	
D	5.97	6.10	6.22	
D1	5.21	_	_	
Е	6.35	6.54	6.73	
E1	4.32	_	_	
е	2.286 BSC			
e1	4.572 BSC			
Н	9.40	9.91	10.41	
L	1.40	1.59	1.78	
L1	2.90 REF			
L2	0.51 BSC			
L3	0.89	1.27		
1.4			400	

MIN.

2.18

GENERIC MARKING DIAGRAM*

XXXXXX XXXXXX **AYWWZZ**

XXXX = Specific Device Code

= Assembly Location Α

WW = Work Week

= Assembly Lot Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

LAND PATTERN RECOMMENDATION

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D

		0		
DOCUMENT NUMBER: 98AON13810G		Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DPAK3 (TO-252 3 LD)	•	PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales